This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the structure replacement function. (Contributed by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | setsvalg | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝑆 sSet 𝐴 ) = ( ( 𝑆 ↾ ( V ∖ dom { 𝐴 } ) ) ∪ { 𝐴 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝑆 ∈ 𝑉 → 𝑆 ∈ V ) | |
| 2 | elex | ⊢ ( 𝐴 ∈ 𝑊 → 𝐴 ∈ V ) | |
| 3 | resexg | ⊢ ( 𝑆 ∈ V → ( 𝑆 ↾ ( V ∖ dom { 𝐴 } ) ) ∈ V ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝑆 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑆 ↾ ( V ∖ dom { 𝐴 } ) ) ∈ V ) |
| 5 | snex | ⊢ { 𝐴 } ∈ V | |
| 6 | unexg | ⊢ ( ( ( 𝑆 ↾ ( V ∖ dom { 𝐴 } ) ) ∈ V ∧ { 𝐴 } ∈ V ) → ( ( 𝑆 ↾ ( V ∖ dom { 𝐴 } ) ) ∪ { 𝐴 } ) ∈ V ) | |
| 7 | 4 5 6 | sylancl | ⊢ ( ( 𝑆 ∈ V ∧ 𝐴 ∈ V ) → ( ( 𝑆 ↾ ( V ∖ dom { 𝐴 } ) ) ∪ { 𝐴 } ) ∈ V ) |
| 8 | simpl | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑒 = 𝐴 ) → 𝑠 = 𝑆 ) | |
| 9 | simpr | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑒 = 𝐴 ) → 𝑒 = 𝐴 ) | |
| 10 | 9 | sneqd | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑒 = 𝐴 ) → { 𝑒 } = { 𝐴 } ) |
| 11 | 10 | dmeqd | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑒 = 𝐴 ) → dom { 𝑒 } = dom { 𝐴 } ) |
| 12 | 11 | difeq2d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑒 = 𝐴 ) → ( V ∖ dom { 𝑒 } ) = ( V ∖ dom { 𝐴 } ) ) |
| 13 | 8 12 | reseq12d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑒 = 𝐴 ) → ( 𝑠 ↾ ( V ∖ dom { 𝑒 } ) ) = ( 𝑆 ↾ ( V ∖ dom { 𝐴 } ) ) ) |
| 14 | 13 10 | uneq12d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑒 = 𝐴 ) → ( ( 𝑠 ↾ ( V ∖ dom { 𝑒 } ) ) ∪ { 𝑒 } ) = ( ( 𝑆 ↾ ( V ∖ dom { 𝐴 } ) ) ∪ { 𝐴 } ) ) |
| 15 | df-sets | ⊢ sSet = ( 𝑠 ∈ V , 𝑒 ∈ V ↦ ( ( 𝑠 ↾ ( V ∖ dom { 𝑒 } ) ) ∪ { 𝑒 } ) ) | |
| 16 | 14 15 | ovmpoga | ⊢ ( ( 𝑆 ∈ V ∧ 𝐴 ∈ V ∧ ( ( 𝑆 ↾ ( V ∖ dom { 𝐴 } ) ) ∪ { 𝐴 } ) ∈ V ) → ( 𝑆 sSet 𝐴 ) = ( ( 𝑆 ↾ ( V ∖ dom { 𝐴 } ) ) ∪ { 𝐴 } ) ) |
| 17 | 7 16 | mpd3an3 | ⊢ ( ( 𝑆 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑆 sSet 𝐴 ) = ( ( 𝑆 ↾ ( V ∖ dom { 𝐴 } ) ) ∪ { 𝐴 } ) ) |
| 18 | 1 2 17 | syl2an | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝑆 sSet 𝐴 ) = ( ( 𝑆 ↾ ( V ∖ dom { 𝐴 } ) ) ∪ { 𝐴 } ) ) |