This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Idempotent law for the predecessor class. (Contributed by Scott Fenton, 29-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | predidm | ⊢ Pred ( 𝑅 , Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝑋 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pred | ⊢ Pred ( 𝑅 , Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝑋 ) = ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) | |
| 2 | df-pred | ⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) | |
| 3 | inidm | ⊢ ( ( ◡ 𝑅 “ { 𝑋 } ) ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( ◡ 𝑅 “ { 𝑋 } ) | |
| 4 | 3 | ineq2i | ⊢ ( 𝐴 ∩ ( ( ◡ 𝑅 “ { 𝑋 } ) ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) |
| 5 | 2 4 | eqtr4i | ⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( ( ◡ 𝑅 “ { 𝑋 } ) ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ) |
| 6 | inass | ⊢ ( ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( 𝐴 ∩ ( ( ◡ 𝑅 “ { 𝑋 } ) ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ) | |
| 7 | 5 6 | eqtr4i | ⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) |
| 8 | 2 | ineq1i | ⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) |
| 9 | 7 8 | eqtr4i | ⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) |
| 10 | 1 9 | eqtr4i | ⊢ Pred ( 𝑅 , Pred ( 𝑅 , 𝐴 , 𝑋 ) , 𝑋 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) |