This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: _E induction schema, using implicit substitution. (Contributed by Scott Fenton, 10-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setinds2.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| setinds2.2 | ⊢ ( ∀ 𝑦 ∈ 𝑥 𝜓 → 𝜑 ) | ||
| Assertion | setinds2 | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setinds2.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | setinds2.2 | ⊢ ( ∀ 𝑦 ∈ 𝑥 𝜓 → 𝜑 ) | |
| 3 | nfv | ⊢ Ⅎ 𝑥 𝜓 | |
| 4 | 3 1 2 | setinds2f | ⊢ 𝜑 |