This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Set substitution into the first argument of a subset relation. (Contributed by Rodolfo Medina, 7-Jul-2010) (Proof shortened by Mario Carneiro, 14-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbss | ⊢ ( [ 𝑦 / 𝑥 ] 𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴 ) ) | |
| 2 | sseq1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴 ) ) | |
| 3 | 1 2 | sbievw2 | ⊢ ( [ 𝑦 / 𝑥 ] 𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴 ) |