This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993) (Revised by Mario Carneiro, 4-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbrbif.1 | ⊢ Ⅎ 𝑥 𝜒 | |
| sbrbif.2 | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) | ||
| Assertion | sbrbif | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ↔ 𝜒 ) ↔ ( 𝜓 ↔ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbrbif.1 | ⊢ Ⅎ 𝑥 𝜒 | |
| 2 | sbrbif.2 | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) | |
| 3 | 2 | sbrbis | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ↔ 𝜒 ) ↔ ( 𝜓 ↔ [ 𝑦 / 𝑥 ] 𝜒 ) ) |
| 4 | 1 | sbf | ⊢ ( [ 𝑦 / 𝑥 ] 𝜒 ↔ 𝜒 ) |
| 5 | 4 | bibi2i | ⊢ ( ( 𝜓 ↔ [ 𝑦 / 𝑥 ] 𝜒 ) ↔ ( 𝜓 ↔ 𝜒 ) ) |
| 6 | 3 5 | bitri | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ↔ 𝜒 ) ↔ ( 𝜓 ↔ 𝜒 ) ) |