This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute proper substitution through a relation predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcrel | |- ( A e. V -> ( [. A / x ]. Rel R <-> Rel [_ A / x ]_ R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcssg | |- ( A e. V -> ( [. A / x ]. R C_ ( _V X. _V ) <-> [_ A / x ]_ R C_ [_ A / x ]_ ( _V X. _V ) ) ) |
|
| 2 | csbconstg | |- ( A e. V -> [_ A / x ]_ ( _V X. _V ) = ( _V X. _V ) ) |
|
| 3 | 2 | sseq2d | |- ( A e. V -> ( [_ A / x ]_ R C_ [_ A / x ]_ ( _V X. _V ) <-> [_ A / x ]_ R C_ ( _V X. _V ) ) ) |
| 4 | 1 3 | bitrd | |- ( A e. V -> ( [. A / x ]. R C_ ( _V X. _V ) <-> [_ A / x ]_ R C_ ( _V X. _V ) ) ) |
| 5 | df-rel | |- ( Rel R <-> R C_ ( _V X. _V ) ) |
|
| 6 | 5 | sbcbii | |- ( [. A / x ]. Rel R <-> [. A / x ]. R C_ ( _V X. _V ) ) |
| 7 | df-rel | |- ( Rel [_ A / x ]_ R <-> [_ A / x ]_ R C_ ( _V X. _V ) ) |
|
| 8 | 4 6 7 | 3bitr4g | |- ( A e. V -> ( [. A / x ]. Rel R <-> Rel [_ A / x ]_ R ) ) |