This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribution of class substitution over implication. One direction of sbcimg that holds for proper classes. (Contributed by NM, 17-Aug-2018) Avoid ax-10 , ax-12 . (Revised by SN, 26-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcim1 | ⊢ ( [ 𝐴 / 𝑥 ] ( 𝜑 → 𝜓 ) → ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex | ⊢ ( [ 𝐴 / 𝑥 ] ( 𝜑 → 𝜓 ) → 𝐴 ∈ V ) | |
| 2 | dfsbcq2 | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ [ 𝐴 / 𝑥 ] ( 𝜑 → 𝜓 ) ) ) | |
| 3 | dfsbcq2 | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 4 | dfsbcq2 | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜓 ↔ [ 𝐴 / 𝑥 ] 𝜓 ) ) | |
| 5 | 3 4 | imbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) ) ) |
| 6 | 2 5 | imbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) → ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) ↔ ( [ 𝐴 / 𝑥 ] ( 𝜑 → 𝜓 ) → ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) ) ) ) |
| 7 | sbi1 | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) → ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) | |
| 8 | 6 7 | vtoclg | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ( 𝜑 → 𝜓 ) → ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) ) ) |
| 9 | 1 8 | mpcom | ⊢ ( [ 𝐴 / 𝑥 ] ( 𝜑 → 𝜓 ) → ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) ) |