This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribution of class substitution over implication. One direction of sbcimg that holds for proper classes. (Contributed by NM, 17-Aug-2018) Avoid ax-10 , ax-12 . (Revised by SN, 26-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcim1 | |- ( [. A / x ]. ( ph -> ps ) -> ( [. A / x ]. ph -> [. A / x ]. ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex | |- ( [. A / x ]. ( ph -> ps ) -> A e. _V ) |
|
| 2 | dfsbcq2 | |- ( y = A -> ( [ y / x ] ( ph -> ps ) <-> [. A / x ]. ( ph -> ps ) ) ) |
|
| 3 | dfsbcq2 | |- ( y = A -> ( [ y / x ] ph <-> [. A / x ]. ph ) ) |
|
| 4 | dfsbcq2 | |- ( y = A -> ( [ y / x ] ps <-> [. A / x ]. ps ) ) |
|
| 5 | 3 4 | imbi12d | |- ( y = A -> ( ( [ y / x ] ph -> [ y / x ] ps ) <-> ( [. A / x ]. ph -> [. A / x ]. ps ) ) ) |
| 6 | 2 5 | imbi12d | |- ( y = A -> ( ( [ y / x ] ( ph -> ps ) -> ( [ y / x ] ph -> [ y / x ] ps ) ) <-> ( [. A / x ]. ( ph -> ps ) -> ( [. A / x ]. ph -> [. A / x ]. ps ) ) ) ) |
| 7 | sbi1 | |- ( [ y / x ] ( ph -> ps ) -> ( [ y / x ] ph -> [ y / x ] ps ) ) |
|
| 8 | 6 7 | vtoclg | |- ( A e. _V -> ( [. A / x ]. ( ph -> ps ) -> ( [. A / x ]. ph -> [. A / x ]. ps ) ) ) |
| 9 | 1 8 | mpcom | |- ( [. A / x ]. ( ph -> ps ) -> ( [. A / x ]. ph -> [. A / x ]. ps ) ) |