This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem sbcid

Description: An identity theorem for substitution. See sbid . (Contributed by Mario Carneiro, 18-Feb-2017)

Ref Expression
Assertion sbcid [˙x / x]˙ φ φ

Proof

Step Hyp Ref Expression
1 sbsbc x x φ [˙x / x]˙ φ
2 sbid x x φ φ
3 1 2 bitr3i [˙x / x]˙ φ φ