This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substitution into a wff expressed in using substitution into a class. (Contributed by NM, 27-Nov-2005) (Revised by NM, 18-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbccsb2 | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝐴 ∈ ⦋ 𝐴 / 𝑥 ⦌ { 𝑥 ∣ 𝜑 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 ∈ V ) | |
| 2 | elex | ⊢ ( 𝐴 ∈ ⦋ 𝐴 / 𝑥 ⦌ { 𝑥 ∣ 𝜑 } → 𝐴 ∈ V ) | |
| 3 | abid | ⊢ ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜑 ) | |
| 4 | 3 | sbcbii | ⊢ ( [ 𝐴 / 𝑥 ] 𝑥 ∈ { 𝑥 ∣ 𝜑 } ↔ [ 𝐴 / 𝑥 ] 𝜑 ) |
| 5 | sbcel12 | ⊢ ( [ 𝐴 / 𝑥 ] 𝑥 ∈ { 𝑥 ∣ 𝜑 } ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝑥 ∈ ⦋ 𝐴 / 𝑥 ⦌ { 𝑥 ∣ 𝜑 } ) | |
| 6 | csbvarg | ⊢ ( 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝑥 = 𝐴 ) | |
| 7 | 6 | eleq1d | ⊢ ( 𝐴 ∈ V → ( ⦋ 𝐴 / 𝑥 ⦌ 𝑥 ∈ ⦋ 𝐴 / 𝑥 ⦌ { 𝑥 ∣ 𝜑 } ↔ 𝐴 ∈ ⦋ 𝐴 / 𝑥 ⦌ { 𝑥 ∣ 𝜑 } ) ) |
| 8 | 5 7 | bitrid | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝑥 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝐴 ∈ ⦋ 𝐴 / 𝑥 ⦌ { 𝑥 ∣ 𝜑 } ) ) |
| 9 | 4 8 | bitr3id | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝐴 ∈ ⦋ 𝐴 / 𝑥 ⦌ { 𝑥 ∣ 𝜑 } ) ) |
| 10 | 1 2 9 | pm5.21nii | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝐴 ∈ ⦋ 𝐴 / 𝑥 ⦌ { 𝑥 ∣ 𝜑 } ) |