This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substitution into a wff expressed in terms of substitution into a class. (Contributed by NM, 15-Aug-2007) (Revised by NM, 18-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbccsb | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ 𝜑 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abid | ⊢ ( 𝑦 ∈ { 𝑦 ∣ 𝜑 } ↔ 𝜑 ) | |
| 2 | 1 | sbcbii | ⊢ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ { 𝑦 ∣ 𝜑 } ↔ [ 𝐴 / 𝑥 ] 𝜑 ) |
| 3 | sbcel2 | ⊢ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ { 𝑦 ∣ 𝜑 } ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ 𝜑 } ) | |
| 4 | 2 3 | bitr3i | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ 𝜑 } ) |