This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbc2iegf.1 | |- F/ x ps |
|
| sbc2iegf.2 | |- F/ y ps |
||
| sbc2iegf.3 | |- F/ x B e. W |
||
| sbc2iegf.4 | |- ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) |
||
| Assertion | sbc2iegf | |- ( ( A e. V /\ B e. W ) -> ( [. A / x ]. [. B / y ]. ph <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc2iegf.1 | |- F/ x ps |
|
| 2 | sbc2iegf.2 | |- F/ y ps |
|
| 3 | sbc2iegf.3 | |- F/ x B e. W |
|
| 4 | sbc2iegf.4 | |- ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) |
|
| 5 | simpl | |- ( ( A e. V /\ B e. W ) -> A e. V ) |
|
| 6 | simpl | |- ( ( B e. W /\ x = A ) -> B e. W ) |
|
| 7 | 4 | adantll | |- ( ( ( B e. W /\ x = A ) /\ y = B ) -> ( ph <-> ps ) ) |
| 8 | nfv | |- F/ y ( B e. W /\ x = A ) |
|
| 9 | 2 | a1i | |- ( ( B e. W /\ x = A ) -> F/ y ps ) |
| 10 | 6 7 8 9 | sbciedf | |- ( ( B e. W /\ x = A ) -> ( [. B / y ]. ph <-> ps ) ) |
| 11 | 10 | adantll | |- ( ( ( A e. V /\ B e. W ) /\ x = A ) -> ( [. B / y ]. ph <-> ps ) ) |
| 12 | nfv | |- F/ x A e. V |
|
| 13 | 12 3 | nfan | |- F/ x ( A e. V /\ B e. W ) |
| 14 | 1 | a1i | |- ( ( A e. V /\ B e. W ) -> F/ x ps ) |
| 15 | 5 11 13 14 | sbciedf | |- ( ( A e. V /\ B e. W ) -> ( [. A / x ]. [. B / y ]. ph <-> ps ) ) |