This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Check out sbal for a version not dependent on ax-13 . A theorem used in elimination of disjoint variable restriction on x and z by replacing it with a distinctor -. A. x x = z . (Contributed by NM, 15-May-1993) (Proof shortened by Wolf Lammen, 3-Oct-2018) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbal1 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb4b | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑦 ( 𝑦 = 𝑧 → ∀ 𝑥 𝜑 ) ) ) | |
| 2 | nfnae | ⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑧 | |
| 3 | nfeqf2 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → Ⅎ 𝑥 𝑦 = 𝑧 ) | |
| 4 | 19.21t | ⊢ ( Ⅎ 𝑥 𝑦 = 𝑧 → ( ∀ 𝑥 ( 𝑦 = 𝑧 → 𝜑 ) ↔ ( 𝑦 = 𝑧 → ∀ 𝑥 𝜑 ) ) ) | |
| 5 | 4 | bicomd | ⊢ ( Ⅎ 𝑥 𝑦 = 𝑧 → ( ( 𝑦 = 𝑧 → ∀ 𝑥 𝜑 ) ↔ ∀ 𝑥 ( 𝑦 = 𝑧 → 𝜑 ) ) ) |
| 6 | 3 5 | syl | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( ( 𝑦 = 𝑧 → ∀ 𝑥 𝜑 ) ↔ ∀ 𝑥 ( 𝑦 = 𝑧 → 𝜑 ) ) ) |
| 7 | 2 6 | albid | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑦 ( 𝑦 = 𝑧 → ∀ 𝑥 𝜑 ) ↔ ∀ 𝑦 ∀ 𝑥 ( 𝑦 = 𝑧 → 𝜑 ) ) ) |
| 8 | 1 7 | sylan9bbr | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑦 ∀ 𝑥 ( 𝑦 = 𝑧 → 𝜑 ) ) ) |
| 9 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑧 | |
| 10 | sb4b | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( [ 𝑧 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 ( 𝑦 = 𝑧 → 𝜑 ) ) ) | |
| 11 | 9 10 | albid | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑦 = 𝑧 → 𝜑 ) ) ) |
| 12 | alcom | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑦 = 𝑧 → 𝜑 ) ↔ ∀ 𝑦 ∀ 𝑥 ( 𝑦 = 𝑧 → 𝜑 ) ) | |
| 13 | 11 12 | bitrdi | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 ∀ 𝑥 ( 𝑦 = 𝑧 → 𝜑 ) ) ) |
| 14 | 13 | adantl | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 ∀ 𝑥 ( 𝑦 = 𝑧 → 𝜑 ) ) ) |
| 15 | 8 14 | bitr4d | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| 16 | 15 | ex | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) ) |
| 17 | sbequ12 | ⊢ ( 𝑦 = 𝑧 → ( ∀ 𝑥 𝜑 ↔ [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ) ) | |
| 18 | 17 | sps | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑥 𝜑 ↔ [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ) ) |
| 19 | sbequ12 | ⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜑 ) ) | |
| 20 | 19 | sps | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| 21 | 20 | dral2 | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| 22 | 18 21 | bitr3d | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| 23 | 16 22 | pm2.61d2 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) |