This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move quantifier in and out of substitution. (Contributed by NM, 2-Jan-2002) Remove a distinct variable constraint. (Revised by Wolf Lammen, 24-Dec-2022) (Proof shortened by Wolf Lammen, 23-Sep-2023) Usage of this theorem is discouraged because it depends on ax-13 . Use sbal instead. (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbal2 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ12 | ⊢ ( 𝑦 = 𝑧 → ( ∀ 𝑥 𝜑 ↔ [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ) ) | |
| 2 | 1 | sps | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑥 𝜑 ↔ [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ) ) |
| 3 | sbequ12 | ⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜑 ) ) | |
| 4 | 3 | sps | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| 5 | 4 | dral2 | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| 6 | 2 5 | bitr3d | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| 7 | 6 | adantl | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑦 𝑦 = 𝑧 ) → ( [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| 8 | sb4b | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑦 ( 𝑦 = 𝑧 → ∀ 𝑥 𝜑 ) ) ) | |
| 9 | 8 | adantl | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑦 ( 𝑦 = 𝑧 → ∀ 𝑥 𝜑 ) ) ) |
| 10 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑧 | |
| 11 | sb4b | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( [ 𝑧 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 ( 𝑦 = 𝑧 → 𝜑 ) ) ) | |
| 12 | 10 11 | albid | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑦 = 𝑧 → 𝜑 ) ) ) |
| 13 | alcom | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑦 = 𝑧 → 𝜑 ) ↔ ∀ 𝑦 ∀ 𝑥 ( 𝑦 = 𝑧 → 𝜑 ) ) | |
| 14 | 12 13 | bitrdi | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 ∀ 𝑥 ( 𝑦 = 𝑧 → 𝜑 ) ) ) |
| 15 | nfnae | ⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 16 | nfeqf1 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦 = 𝑧 ) | |
| 17 | 19.21t | ⊢ ( Ⅎ 𝑥 𝑦 = 𝑧 → ( ∀ 𝑥 ( 𝑦 = 𝑧 → 𝜑 ) ↔ ( 𝑦 = 𝑧 → ∀ 𝑥 𝜑 ) ) ) | |
| 18 | 16 17 | syl | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 ( 𝑦 = 𝑧 → 𝜑 ) ↔ ( 𝑦 = 𝑧 → ∀ 𝑥 𝜑 ) ) ) |
| 19 | 15 18 | albid | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑦 ∀ 𝑥 ( 𝑦 = 𝑧 → 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 = 𝑧 → ∀ 𝑥 𝜑 ) ) ) |
| 20 | 14 19 | sylan9bbr | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 ( 𝑦 = 𝑧 → ∀ 𝑥 𝜑 ) ) ) |
| 21 | 9 20 | bitr4d | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| 22 | 7 21 | pm2.61dan | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) |