This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the satisfaction predicate as function over wff codes at a natural number is a relation. (Contributed by AV, 12-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | satfrel | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝑎 = ∅ → ( ( 𝑀 Sat 𝐸 ) ‘ 𝑎 ) = ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) | |
| 2 | 1 | releqd | ⊢ ( 𝑎 = ∅ → ( Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑎 ) ↔ Rel ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) ) |
| 3 | 2 | imbi2d | ⊢ ( 𝑎 = ∅ → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑎 ) ) ↔ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Rel ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) ) ) |
| 4 | fveq2 | ⊢ ( 𝑎 = 𝑏 → ( ( 𝑀 Sat 𝐸 ) ‘ 𝑎 ) = ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ) | |
| 5 | 4 | releqd | ⊢ ( 𝑎 = 𝑏 → ( Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑎 ) ↔ Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ) ) |
| 6 | 5 | imbi2d | ⊢ ( 𝑎 = 𝑏 → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑎 ) ) ↔ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ) ) ) |
| 7 | fveq2 | ⊢ ( 𝑎 = suc 𝑏 → ( ( 𝑀 Sat 𝐸 ) ‘ 𝑎 ) = ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑏 ) ) | |
| 8 | 7 | releqd | ⊢ ( 𝑎 = suc 𝑏 → ( Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑎 ) ↔ Rel ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑏 ) ) ) |
| 9 | 8 | imbi2d | ⊢ ( 𝑎 = suc 𝑏 → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑎 ) ) ↔ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Rel ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑏 ) ) ) ) |
| 10 | fveq2 | ⊢ ( 𝑎 = 𝑁 → ( ( 𝑀 Sat 𝐸 ) ‘ 𝑎 ) = ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) | |
| 11 | 10 | releqd | ⊢ ( 𝑎 = 𝑁 → ( Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑎 ) ↔ Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑎 = 𝑁 → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑎 ) ) ↔ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) ) |
| 13 | relopabv | ⊢ Rel { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } | |
| 14 | eqid | ⊢ ( 𝑀 Sat 𝐸 ) = ( 𝑀 Sat 𝐸 ) | |
| 15 | 14 | satfv0 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ) |
| 16 | 15 | releqd | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( Rel ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ↔ Rel { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ) ) |
| 17 | 13 16 | mpbiri | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Rel ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) |
| 18 | pm2.27 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ) → Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ) ) | |
| 19 | simpr | ⊢ ( ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ 𝑏 ∈ ω ) ∧ Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ) → Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ) | |
| 20 | relopabv | ⊢ Rel { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } | |
| 21 | relun | ⊢ ( Rel ( ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ↔ ( Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ∧ Rel { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ) | |
| 22 | 19 20 21 | sylanblrc | ⊢ ( ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ 𝑏 ∈ ω ) ∧ Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ) → Rel ( ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ) |
| 23 | 14 | satfvsuc | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑏 ∈ ω ) → ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑏 ) = ( ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ) |
| 24 | 23 | ad4ant123 | ⊢ ( ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ 𝑏 ∈ ω ) ∧ Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ) → ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑏 ) = ( ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ) |
| 25 | 24 | releqd | ⊢ ( ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ 𝑏 ∈ ω ) ∧ Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ) → ( Rel ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑏 ) ↔ Rel ( ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ) ) |
| 26 | 22 25 | mpbird | ⊢ ( ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ 𝑏 ∈ ω ) ∧ Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ) → Rel ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑏 ) ) |
| 27 | 26 | exp31 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑏 ∈ ω → ( Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) → Rel ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑏 ) ) ) ) |
| 28 | 27 | com23 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) → ( 𝑏 ∈ ω → Rel ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑏 ) ) ) ) |
| 29 | 18 28 | syld | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ) → ( 𝑏 ∈ ω → Rel ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑏 ) ) ) ) |
| 30 | 29 | com13 | ⊢ ( 𝑏 ∈ ω → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑏 ) ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Rel ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑏 ) ) ) ) |
| 31 | 3 6 9 12 17 30 | finds | ⊢ ( 𝑁 ∈ ω → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) |
| 32 | 31 | com12 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑁 ∈ ω → Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ) |
| 33 | 32 | 3impia | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → Rel ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) |