This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two length 3 words are equal iff the corresponding symbols are equal. (Contributed by AV, 4-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | s3eq3seq | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉 ) ) → ( 〈“ 𝐴 𝐵 𝐶 ”〉 = 〈“ 𝐷 𝐸 𝐹 ”〉 ↔ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s3eqs2s1eq | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉 ) ) → ( 〈“ 𝐴 𝐵 𝐶 ”〉 = 〈“ 𝐷 𝐸 𝐹 ”〉 ↔ ( 〈“ 𝐴 𝐵 ”〉 = 〈“ 𝐷 𝐸 ”〉 ∧ 〈“ 𝐶 ”〉 = 〈“ 𝐹 ”〉 ) ) ) | |
| 2 | 3simpa | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) | |
| 3 | 3simpa | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉 ) → ( 𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ) ) | |
| 4 | s2eq2seq | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ) ) → ( 〈“ 𝐴 𝐵 ”〉 = 〈“ 𝐷 𝐸 ”〉 ↔ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ) ) ) | |
| 5 | 2 3 4 | syl2an | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉 ) ) → ( 〈“ 𝐴 𝐵 ”〉 = 〈“ 𝐷 𝐸 ”〉 ↔ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ) ) ) |
| 6 | simp3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 𝐶 ∈ 𝑉 ) | |
| 7 | simp3 | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉 ) → 𝐹 ∈ 𝑉 ) | |
| 8 | s111 | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉 ) → ( 〈“ 𝐶 ”〉 = 〈“ 𝐹 ”〉 ↔ 𝐶 = 𝐹 ) ) | |
| 9 | 6 7 8 | syl2an | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉 ) ) → ( 〈“ 𝐶 ”〉 = 〈“ 𝐹 ”〉 ↔ 𝐶 = 𝐹 ) ) |
| 10 | 5 9 | anbi12d | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉 ) ) → ( ( 〈“ 𝐴 𝐵 ”〉 = 〈“ 𝐷 𝐸 ”〉 ∧ 〈“ 𝐶 ”〉 = 〈“ 𝐹 ”〉 ) ↔ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ) ∧ 𝐶 = 𝐹 ) ) ) |
| 11 | df-3an | ⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹 ) ↔ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ) ∧ 𝐶 = 𝐹 ) ) | |
| 12 | 10 11 | bitr4di | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉 ) ) → ( ( 〈“ 𝐴 𝐵 ”〉 = 〈“ 𝐷 𝐸 ”〉 ∧ 〈“ 𝐶 ”〉 = 〈“ 𝐹 ”〉 ) ↔ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹 ) ) ) |
| 13 | 1 12 | bitrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉 ) ) → ( 〈“ 𝐴 𝐵 𝐶 ”〉 = 〈“ 𝐷 𝐸 𝐹 ”〉 ↔ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹 ) ) ) |