This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017) Avoid ax-10 and ax-11 . (Revised by GG, 20-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spcimdv.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | |
| spcimdv.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 → 𝜒 ) ) | ||
| Assertion | spcimdv | ⊢ ( 𝜑 → ( ∀ 𝑥 𝜓 → 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcimdv.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | |
| 2 | spcimdv.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 → 𝜒 ) ) | |
| 3 | elisset | ⊢ ( 𝐴 ∈ 𝐵 → ∃ 𝑥 𝑥 = 𝐴 ) | |
| 4 | 1 3 | syl | ⊢ ( 𝜑 → ∃ 𝑥 𝑥 = 𝐴 ) |
| 5 | 2 | ex | ⊢ ( 𝜑 → ( 𝑥 = 𝐴 → ( 𝜓 → 𝜒 ) ) ) |
| 6 | 5 | eximdv | ⊢ ( 𝜑 → ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 ( 𝜓 → 𝜒 ) ) ) |
| 7 | 4 6 | mpd | ⊢ ( 𝜑 → ∃ 𝑥 ( 𝜓 → 𝜒 ) ) |
| 8 | 19.36v | ⊢ ( ∃ 𝑥 ( 𝜓 → 𝜒 ) ↔ ( ∀ 𝑥 𝜓 → 𝜒 ) ) | |
| 9 | 7 8 | sylib | ⊢ ( 𝜑 → ( ∀ 𝑥 𝜓 → 𝜒 ) ) |