This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 8-variable restricted specialization, using implicit substitution. (Contributed by Scott Fenton, 20-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspc8v.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) | |
| rspc8v.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜒 ↔ 𝜃 ) ) | ||
| rspc8v.3 | ⊢ ( 𝑧 = 𝐶 → ( 𝜃 ↔ 𝜏 ) ) | ||
| rspc8v.4 | ⊢ ( 𝑤 = 𝐷 → ( 𝜏 ↔ 𝜂 ) ) | ||
| rspc8v.5 | ⊢ ( 𝑝 = 𝐸 → ( 𝜂 ↔ 𝜁 ) ) | ||
| rspc8v.6 | ⊢ ( 𝑞 = 𝐹 → ( 𝜁 ↔ 𝜎 ) ) | ||
| rspc8v.7 | ⊢ ( 𝑟 = 𝐺 → ( 𝜎 ↔ 𝜌 ) ) | ||
| rspc8v.8 | ⊢ ( 𝑠 = 𝐻 → ( 𝜌 ↔ 𝜓 ) ) | ||
| Assertion | rspc8v | ⊢ ( ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑈 ) ) ∧ ( ( 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ) ∧ ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ) ) ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑇 ∀ 𝑤 ∈ 𝑈 ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 ∀ 𝑟 ∈ 𝑋 ∀ 𝑠 ∈ 𝑌 𝜑 → 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc8v.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) | |
| 2 | rspc8v.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜒 ↔ 𝜃 ) ) | |
| 3 | rspc8v.3 | ⊢ ( 𝑧 = 𝐶 → ( 𝜃 ↔ 𝜏 ) ) | |
| 4 | rspc8v.4 | ⊢ ( 𝑤 = 𝐷 → ( 𝜏 ↔ 𝜂 ) ) | |
| 5 | rspc8v.5 | ⊢ ( 𝑝 = 𝐸 → ( 𝜂 ↔ 𝜁 ) ) | |
| 6 | rspc8v.6 | ⊢ ( 𝑞 = 𝐹 → ( 𝜁 ↔ 𝜎 ) ) | |
| 7 | rspc8v.7 | ⊢ ( 𝑟 = 𝐺 → ( 𝜎 ↔ 𝜌 ) ) | |
| 8 | rspc8v.8 | ⊢ ( 𝑠 = 𝐻 → ( 𝜌 ↔ 𝜓 ) ) | |
| 9 | 1 | 4ralbidv | ⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 ∀ 𝑟 ∈ 𝑋 ∀ 𝑠 ∈ 𝑌 𝜑 ↔ ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 ∀ 𝑟 ∈ 𝑋 ∀ 𝑠 ∈ 𝑌 𝜒 ) ) |
| 10 | 2 | 4ralbidv | ⊢ ( 𝑦 = 𝐵 → ( ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 ∀ 𝑟 ∈ 𝑋 ∀ 𝑠 ∈ 𝑌 𝜒 ↔ ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 ∀ 𝑟 ∈ 𝑋 ∀ 𝑠 ∈ 𝑌 𝜃 ) ) |
| 11 | 3 | 4ralbidv | ⊢ ( 𝑧 = 𝐶 → ( ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 ∀ 𝑟 ∈ 𝑋 ∀ 𝑠 ∈ 𝑌 𝜃 ↔ ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 ∀ 𝑟 ∈ 𝑋 ∀ 𝑠 ∈ 𝑌 𝜏 ) ) |
| 12 | 4 | 4ralbidv | ⊢ ( 𝑤 = 𝐷 → ( ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 ∀ 𝑟 ∈ 𝑋 ∀ 𝑠 ∈ 𝑌 𝜏 ↔ ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 ∀ 𝑟 ∈ 𝑋 ∀ 𝑠 ∈ 𝑌 𝜂 ) ) |
| 13 | 9 10 11 12 | rspc4v | ⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑈 ) ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑇 ∀ 𝑤 ∈ 𝑈 ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 ∀ 𝑟 ∈ 𝑋 ∀ 𝑠 ∈ 𝑌 𝜑 → ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 ∀ 𝑟 ∈ 𝑋 ∀ 𝑠 ∈ 𝑌 𝜂 ) ) |
| 14 | 5 6 7 8 | rspc4v | ⊢ ( ( ( 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ) ∧ ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ) ) → ( ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 ∀ 𝑟 ∈ 𝑋 ∀ 𝑠 ∈ 𝑌 𝜂 → 𝜓 ) ) |
| 15 | 13 14 | sylan9 | ⊢ ( ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑈 ) ) ∧ ( ( 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ) ∧ ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ) ) ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑇 ∀ 𝑤 ∈ 𝑈 ∀ 𝑝 ∈ 𝑉 ∀ 𝑞 ∈ 𝑊 ∀ 𝑟 ∈ 𝑋 ∀ 𝑠 ∈ 𝑌 𝜑 → 𝜓 ) ) |