This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero ring is not a field. (Contributed by AV, 29-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rng1nfld.m | ⊢ 𝑀 = { 〈 ( Base ‘ ndx ) , { 𝑍 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } 〉 , 〈 ( .r ‘ ndx ) , { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } 〉 } | |
| Assertion | rng1nfld | ⊢ ( 𝑍 ∈ 𝑉 → 𝑀 ∉ Field ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rng1nfld.m | ⊢ 𝑀 = { 〈 ( Base ‘ ndx ) , { 𝑍 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } 〉 , 〈 ( .r ‘ ndx ) , { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } 〉 } | |
| 2 | 1 | rng1nnzr | ⊢ ( 𝑍 ∈ 𝑉 → 𝑀 ∉ NzRing ) |
| 3 | df-nel | ⊢ ( 𝑀 ∉ NzRing ↔ ¬ 𝑀 ∈ NzRing ) | |
| 4 | 2 3 | sylib | ⊢ ( 𝑍 ∈ 𝑉 → ¬ 𝑀 ∈ NzRing ) |
| 5 | drngnzr | ⊢ ( 𝑀 ∈ DivRing → 𝑀 ∈ NzRing ) | |
| 6 | 4 5 | nsyl | ⊢ ( 𝑍 ∈ 𝑉 → ¬ 𝑀 ∈ DivRing ) |
| 7 | isfld | ⊢ ( 𝑀 ∈ Field ↔ ( 𝑀 ∈ DivRing ∧ 𝑀 ∈ CRing ) ) | |
| 8 | 7 | simplbi | ⊢ ( 𝑀 ∈ Field → 𝑀 ∈ DivRing ) |
| 9 | 6 8 | nsyl | ⊢ ( 𝑍 ∈ 𝑉 → ¬ 𝑀 ∈ Field ) |
| 10 | df-nel | ⊢ ( 𝑀 ∉ Field ↔ ¬ 𝑀 ∈ Field ) | |
| 11 | 9 10 | sylibr | ⊢ ( 𝑍 ∈ 𝑉 → 𝑀 ∉ Field ) |