This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of the membership relation is the universal class minus the empty set. (Contributed by BJ, 26-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rnep | ⊢ ran E = ( V ∖ { ∅ } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrn2 | ⊢ ran E = { 𝑥 ∣ ∃ 𝑦 𝑦 E 𝑥 } | |
| 2 | nfab1 | ⊢ Ⅎ 𝑥 { 𝑥 ∣ ∃ 𝑦 𝑦 E 𝑥 } | |
| 3 | nfcv | ⊢ Ⅎ 𝑥 ( V ∖ { ∅ } ) | |
| 4 | abid | ⊢ ( 𝑥 ∈ { 𝑥 ∣ ∃ 𝑦 𝑦 E 𝑥 } ↔ ∃ 𝑦 𝑦 E 𝑥 ) | |
| 5 | epel | ⊢ ( 𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥 ) | |
| 6 | 5 | exbii | ⊢ ( ∃ 𝑦 𝑦 E 𝑥 ↔ ∃ 𝑦 𝑦 ∈ 𝑥 ) |
| 7 | neq0 | ⊢ ( ¬ 𝑥 = ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝑥 ) | |
| 8 | 7 | bicomi | ⊢ ( ∃ 𝑦 𝑦 ∈ 𝑥 ↔ ¬ 𝑥 = ∅ ) |
| 9 | velsn | ⊢ ( 𝑥 ∈ { ∅ } ↔ 𝑥 = ∅ ) | |
| 10 | 9 | bicomi | ⊢ ( 𝑥 = ∅ ↔ 𝑥 ∈ { ∅ } ) |
| 11 | 10 | notbii | ⊢ ( ¬ 𝑥 = ∅ ↔ ¬ 𝑥 ∈ { ∅ } ) |
| 12 | 6 8 11 | 3bitri | ⊢ ( ∃ 𝑦 𝑦 E 𝑥 ↔ ¬ 𝑥 ∈ { ∅ } ) |
| 13 | velcomp | ⊢ ( 𝑥 ∈ ( V ∖ { ∅ } ) ↔ ¬ 𝑥 ∈ { ∅ } ) | |
| 14 | 13 | bicomi | ⊢ ( ¬ 𝑥 ∈ { ∅ } ↔ 𝑥 ∈ ( V ∖ { ∅ } ) ) |
| 15 | 4 12 14 | 3bitri | ⊢ ( 𝑥 ∈ { 𝑥 ∣ ∃ 𝑦 𝑦 E 𝑥 } ↔ 𝑥 ∈ ( V ∖ { ∅ } ) ) |
| 16 | 2 3 15 | eqri | ⊢ { 𝑥 ∣ ∃ 𝑦 𝑦 E 𝑥 } = ( V ∖ { ∅ } ) |
| 17 | 1 16 | eqtri | ⊢ ran E = ( V ∖ { ∅ } ) |