This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of the membership relation is the universal class minus the empty set. (Contributed by BJ, 26-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rnep | |- ran _E = ( _V \ { (/) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrn2 | |- ran _E = { x | E. y y _E x } |
|
| 2 | nfab1 | |- F/_ x { x | E. y y _E x } |
|
| 3 | nfcv | |- F/_ x ( _V \ { (/) } ) |
|
| 4 | abid | |- ( x e. { x | E. y y _E x } <-> E. y y _E x ) |
|
| 5 | epel | |- ( y _E x <-> y e. x ) |
|
| 6 | 5 | exbii | |- ( E. y y _E x <-> E. y y e. x ) |
| 7 | neq0 | |- ( -. x = (/) <-> E. y y e. x ) |
|
| 8 | 7 | bicomi | |- ( E. y y e. x <-> -. x = (/) ) |
| 9 | velsn | |- ( x e. { (/) } <-> x = (/) ) |
|
| 10 | 9 | bicomi | |- ( x = (/) <-> x e. { (/) } ) |
| 11 | 10 | notbii | |- ( -. x = (/) <-> -. x e. { (/) } ) |
| 12 | 6 8 11 | 3bitri | |- ( E. y y _E x <-> -. x e. { (/) } ) |
| 13 | velcomp | |- ( x e. ( _V \ { (/) } ) <-> -. x e. { (/) } ) |
|
| 14 | 13 | bicomi | |- ( -. x e. { (/) } <-> x e. ( _V \ { (/) } ) ) |
| 15 | 4 12 14 | 3bitri | |- ( x e. { x | E. y y _E x } <-> x e. ( _V \ { (/) } ) ) |
| 16 | 2 3 15 | eqri | |- { x | E. y y _E x } = ( _V \ { (/) } ) |
| 17 | 1 16 | eqtri | |- ran _E = ( _V \ { (/) } ) |