This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Infer equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 7-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqri.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| eqri.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
| eqri.3 | ⊢ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) | ||
| Assertion | eqri | ⊢ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqri.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | eqri.2 | ⊢ Ⅎ 𝑥 𝐵 | |
| 3 | eqri.3 | ⊢ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) | |
| 4 | nftru | ⊢ Ⅎ 𝑥 ⊤ | |
| 5 | 3 | a1i | ⊢ ( ⊤ → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 6 | 4 1 2 5 | eqrd | ⊢ ( ⊤ → 𝐴 = 𝐵 ) |
| 7 | 6 | mptru | ⊢ 𝐴 = 𝐵 |