This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit of the real part of a sequence. Proposition 12-2.4(c) of Gleason p. 172. (Contributed by Mario Carneiro, 10-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimabs.1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| rlimabs.2 | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ) | ||
| Assertion | rlimre | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ⇝𝑟 ( ℜ ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimabs.1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 2 | rlimabs.2 | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ) | |
| 3 | 1 2 | rlimmptrcl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 4 | rlimcl | ⊢ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 → 𝐶 ∈ ℂ ) | |
| 5 | 2 4 | syl | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 6 | ref | ⊢ ℜ : ℂ ⟶ ℝ | |
| 7 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 8 | fss | ⊢ ( ( ℜ : ℂ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → ℜ : ℂ ⟶ ℂ ) | |
| 9 | 6 7 8 | mp2an | ⊢ ℜ : ℂ ⟶ ℂ |
| 10 | 9 | a1i | ⊢ ( 𝜑 → ℜ : ℂ ⟶ ℂ ) |
| 11 | recn2 | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℂ ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( ℜ ‘ 𝑧 ) − ( ℜ ‘ 𝐶 ) ) ) < 𝑥 ) ) | |
| 12 | 5 11 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℂ ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( ℜ ‘ 𝑧 ) − ( ℜ ‘ 𝐶 ) ) ) < 𝑥 ) ) |
| 13 | 3 5 2 10 12 | rlimcn1b | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ⇝𝑟 ( ℜ ‘ 𝐶 ) ) |