This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlimpm | |- ( F ~~>r A -> F e. ( CC ^pm RR ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rlim | |- ~~>r = { <. f , x >. | ( ( f e. ( CC ^pm RR ) /\ x e. CC ) /\ A. y e. RR+ E. z e. RR A. w e. dom f ( z <_ w -> ( abs ` ( ( f ` w ) - x ) ) < y ) ) } |
|
| 2 | opabssxp | |- { <. f , x >. | ( ( f e. ( CC ^pm RR ) /\ x e. CC ) /\ A. y e. RR+ E. z e. RR A. w e. dom f ( z <_ w -> ( abs ` ( ( f ` w ) - x ) ) < y ) ) } C_ ( ( CC ^pm RR ) X. CC ) |
|
| 3 | 1 2 | eqsstri | |- ~~>r C_ ( ( CC ^pm RR ) X. CC ) |
| 4 | dmss | |- ( ~~>r C_ ( ( CC ^pm RR ) X. CC ) -> dom ~~>r C_ dom ( ( CC ^pm RR ) X. CC ) ) |
|
| 5 | 3 4 | ax-mp | |- dom ~~>r C_ dom ( ( CC ^pm RR ) X. CC ) |
| 6 | dmxpss | |- dom ( ( CC ^pm RR ) X. CC ) C_ ( CC ^pm RR ) |
|
| 7 | 5 6 | sstri | |- dom ~~>r C_ ( CC ^pm RR ) |
| 8 | rlimrel | |- Rel ~~>r |
|
| 9 | 8 | releldmi | |- ( F ~~>r A -> F e. dom ~~>r ) |
| 10 | 7 9 | sselid | |- ( F ~~>r A -> F e. ( CC ^pm RR ) ) |