This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted iota of a restricted abstraction. (Contributed by Scott Fenton, 8-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | riotarab.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | riotarab | ⊢ ( ℩ 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜓 } 𝜒 ) = ( ℩ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotarab.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | 1 | bicomd | ⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜑 ) ) |
| 3 | 2 | equcoms | ⊢ ( 𝑦 = 𝑥 → ( 𝜓 ↔ 𝜑 ) ) |
| 4 | 3 | elrab | ⊢ ( 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜓 } ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
| 5 | 4 | anbi1i | ⊢ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜓 } ∧ 𝜒 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ 𝜒 ) ) |
| 6 | anass | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ 𝜒 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜒 ) ) ) | |
| 7 | 5 6 | bitri | ⊢ ( ( 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜓 } ∧ 𝜒 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜒 ) ) ) |
| 8 | 7 | iotabii | ⊢ ( ℩ 𝑥 ( 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜓 } ∧ 𝜒 ) ) = ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜒 ) ) ) |
| 9 | df-riota | ⊢ ( ℩ 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜓 } 𝜒 ) = ( ℩ 𝑥 ( 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜓 } ∧ 𝜒 ) ) | |
| 10 | df-riota | ⊢ ( ℩ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜒 ) ) = ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜒 ) ) ) | |
| 11 | 8 9 10 | 3eqtr4i | ⊢ ( ℩ 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜓 } 𝜒 ) = ( ℩ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜒 ) ) |