This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted iota of a restricted abstraction. (Contributed by Scott Fenton, 8-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | riotarab.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| Assertion | riotarab | |- ( iota_ x e. { y e. A | ps } ch ) = ( iota_ x e. A ( ph /\ ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotarab.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 2 | 1 | bicomd | |- ( x = y -> ( ps <-> ph ) ) |
| 3 | 2 | equcoms | |- ( y = x -> ( ps <-> ph ) ) |
| 4 | 3 | elrab | |- ( x e. { y e. A | ps } <-> ( x e. A /\ ph ) ) |
| 5 | 4 | anbi1i | |- ( ( x e. { y e. A | ps } /\ ch ) <-> ( ( x e. A /\ ph ) /\ ch ) ) |
| 6 | anass | |- ( ( ( x e. A /\ ph ) /\ ch ) <-> ( x e. A /\ ( ph /\ ch ) ) ) |
|
| 7 | 5 6 | bitri | |- ( ( x e. { y e. A | ps } /\ ch ) <-> ( x e. A /\ ( ph /\ ch ) ) ) |
| 8 | 7 | iotabii | |- ( iota x ( x e. { y e. A | ps } /\ ch ) ) = ( iota x ( x e. A /\ ( ph /\ ch ) ) ) |
| 9 | df-riota | |- ( iota_ x e. { y e. A | ps } ch ) = ( iota x ( x e. { y e. A | ps } /\ ch ) ) |
|
| 10 | df-riota | |- ( iota_ x e. A ( ph /\ ch ) ) = ( iota x ( x e. A /\ ( ph /\ ch ) ) ) |
|
| 11 | 8 9 10 | 3eqtr4i | |- ( iota_ x e. { y e. A | ps } ch ) = ( iota_ x e. A ( ph /\ ch ) ) |