This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of restricted iota. (Contributed by NM, 28-Feb-2013) (Revised by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | riotaclbgBAD | |- ( A e. V -> ( E! x e. A ph <-> ( iota_ x e. A ph ) e. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotacl | |- ( E! x e. A ph -> ( iota_ x e. A ph ) e. A ) |
|
| 2 | undefnel2 | |- ( A e. V -> -. ( Undef ` A ) e. A ) |
|
| 3 | iffalse | |- ( -. E! x e. A ph -> if ( E! x e. A ph , ( iota x ( x e. A /\ ph ) ) , ( Undef ` { x | x e. A } ) ) = ( Undef ` { x | x e. A } ) ) |
|
| 4 | ax-riotaBAD | |- ( iota_ x e. A ph ) = if ( E! x e. A ph , ( iota x ( x e. A /\ ph ) ) , ( Undef ` { x | x e. A } ) ) |
|
| 5 | abid1 | |- A = { x | x e. A } |
|
| 6 | 5 | fveq2i | |- ( Undef ` A ) = ( Undef ` { x | x e. A } ) |
| 7 | 3 4 6 | 3eqtr4g | |- ( -. E! x e. A ph -> ( iota_ x e. A ph ) = ( Undef ` A ) ) |
| 8 | 7 | eleq1d | |- ( -. E! x e. A ph -> ( ( iota_ x e. A ph ) e. A <-> ( Undef ` A ) e. A ) ) |
| 9 | 8 | notbid | |- ( -. E! x e. A ph -> ( -. ( iota_ x e. A ph ) e. A <-> -. ( Undef ` A ) e. A ) ) |
| 10 | 2 9 | syl5ibrcom | |- ( A e. V -> ( -. E! x e. A ph -> -. ( iota_ x e. A ph ) e. A ) ) |
| 11 | 10 | con4d | |- ( A e. V -> ( ( iota_ x e. A ph ) e. A -> E! x e. A ph ) ) |
| 12 | 1 11 | impbid2 | |- ( A e. V -> ( E! x e. A ph <-> ( iota_ x e. A ph ) e. A ) ) |