This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the category of unital rings (in a universe). (Contributed by AV, 13-Feb-2020) (Revised by AV, 8-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringcval.c | ⊢ 𝐶 = ( RingCat ‘ 𝑈 ) | |
| ringcval.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| ringcval.b | ⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Ring ) ) | ||
| ringcval.h | ⊢ ( 𝜑 → 𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) | ||
| Assertion | ringcval | ⊢ ( 𝜑 → 𝐶 = ( ( ExtStrCat ‘ 𝑈 ) ↾cat 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringcval.c | ⊢ 𝐶 = ( RingCat ‘ 𝑈 ) | |
| 2 | ringcval.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 3 | ringcval.b | ⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Ring ) ) | |
| 4 | ringcval.h | ⊢ ( 𝜑 → 𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) | |
| 5 | df-ringc | ⊢ RingCat = ( 𝑢 ∈ V ↦ ( ( ExtStrCat ‘ 𝑢 ) ↾cat ( RingHom ↾ ( ( 𝑢 ∩ Ring ) × ( 𝑢 ∩ Ring ) ) ) ) ) | |
| 6 | fveq2 | ⊢ ( 𝑢 = 𝑈 → ( ExtStrCat ‘ 𝑢 ) = ( ExtStrCat ‘ 𝑈 ) ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → ( ExtStrCat ‘ 𝑢 ) = ( ExtStrCat ‘ 𝑈 ) ) |
| 8 | ineq1 | ⊢ ( 𝑢 = 𝑈 → ( 𝑢 ∩ Ring ) = ( 𝑈 ∩ Ring ) ) | |
| 9 | 8 | sqxpeqd | ⊢ ( 𝑢 = 𝑈 → ( ( 𝑢 ∩ Ring ) × ( 𝑢 ∩ Ring ) ) = ( ( 𝑈 ∩ Ring ) × ( 𝑈 ∩ Ring ) ) ) |
| 10 | 3 | sqxpeqd | ⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) = ( ( 𝑈 ∩ Ring ) × ( 𝑈 ∩ Ring ) ) ) |
| 11 | 10 | eqcomd | ⊢ ( 𝜑 → ( ( 𝑈 ∩ Ring ) × ( 𝑈 ∩ Ring ) ) = ( 𝐵 × 𝐵 ) ) |
| 12 | 9 11 | sylan9eqr | ⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → ( ( 𝑢 ∩ Ring ) × ( 𝑢 ∩ Ring ) ) = ( 𝐵 × 𝐵 ) ) |
| 13 | 12 | reseq2d | ⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → ( RingHom ↾ ( ( 𝑢 ∩ Ring ) × ( 𝑢 ∩ Ring ) ) ) = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) |
| 14 | 4 | eqcomd | ⊢ ( 𝜑 → ( RingHom ↾ ( 𝐵 × 𝐵 ) ) = 𝐻 ) |
| 15 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → ( RingHom ↾ ( 𝐵 × 𝐵 ) ) = 𝐻 ) |
| 16 | 13 15 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → ( RingHom ↾ ( ( 𝑢 ∩ Ring ) × ( 𝑢 ∩ Ring ) ) ) = 𝐻 ) |
| 17 | 7 16 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → ( ( ExtStrCat ‘ 𝑢 ) ↾cat ( RingHom ↾ ( ( 𝑢 ∩ Ring ) × ( 𝑢 ∩ Ring ) ) ) ) = ( ( ExtStrCat ‘ 𝑈 ) ↾cat 𝐻 ) ) |
| 18 | 2 | elexd | ⊢ ( 𝜑 → 𝑈 ∈ V ) |
| 19 | ovexd | ⊢ ( 𝜑 → ( ( ExtStrCat ‘ 𝑈 ) ↾cat 𝐻 ) ∈ V ) | |
| 20 | 5 17 18 19 | fvmptd2 | ⊢ ( 𝜑 → ( RingCat ‘ 𝑈 ) = ( ( ExtStrCat ‘ 𝑈 ) ↾cat 𝐻 ) ) |
| 21 | 1 20 | eqtrid | ⊢ ( 𝜑 → 𝐶 = ( ( ExtStrCat ‘ 𝑈 ) ↾cat 𝐻 ) ) |