This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition in the category of unital rings. (Contributed by AV, 14-Feb-2020) (Revised by AV, 8-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringcco.c | ⊢ 𝐶 = ( RingCat ‘ 𝑈 ) | |
| ringcco.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| ringcco.o | ⊢ · = ( comp ‘ 𝐶 ) | ||
| Assertion | ringccofval | ⊢ ( 𝜑 → · = ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringcco.c | ⊢ 𝐶 = ( RingCat ‘ 𝑈 ) | |
| 2 | ringcco.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 3 | ringcco.o | ⊢ · = ( comp ‘ 𝐶 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 5 | 1 4 2 | ringcbas | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( 𝑈 ∩ Ring ) ) |
| 6 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 7 | 1 4 2 6 | ringchomfval | ⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) = ( RingHom ↾ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) |
| 8 | 1 2 5 7 | ringcval | ⊢ ( 𝜑 → 𝐶 = ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝐶 ) ) ) |
| 9 | 8 | fveq2d | ⊢ ( 𝜑 → ( comp ‘ 𝐶 ) = ( comp ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝐶 ) ) ) ) |
| 10 | 3 | a1i | ⊢ ( 𝜑 → · = ( comp ‘ 𝐶 ) ) |
| 11 | eqid | ⊢ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝐶 ) ) = ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝐶 ) ) | |
| 12 | eqid | ⊢ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) = ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) | |
| 13 | fvexd | ⊢ ( 𝜑 → ( ExtStrCat ‘ 𝑈 ) ∈ V ) | |
| 14 | 5 7 | rhmresfn | ⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 15 | inss1 | ⊢ ( 𝑈 ∩ Ring ) ⊆ 𝑈 | |
| 16 | 15 | a1i | ⊢ ( 𝜑 → ( 𝑈 ∩ Ring ) ⊆ 𝑈 ) |
| 17 | eqid | ⊢ ( ExtStrCat ‘ 𝑈 ) = ( ExtStrCat ‘ 𝑈 ) | |
| 18 | 17 2 | estrcbas | ⊢ ( 𝜑 → 𝑈 = ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ) |
| 19 | 18 | eqcomd | ⊢ ( 𝜑 → ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) = 𝑈 ) |
| 20 | 16 5 19 | 3sstr4d | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) ⊆ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ) |
| 21 | eqid | ⊢ ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) = ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) | |
| 22 | 11 12 13 14 20 21 | rescco | ⊢ ( 𝜑 → ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) = ( comp ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( Hom ‘ 𝐶 ) ) ) ) |
| 23 | 9 10 22 | 3eqtr4d | ⊢ ( 𝜑 → · = ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) ) |