This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexuz2 | ⊢ ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) 𝜑 ↔ ( 𝑀 ∈ ℤ ∧ ∃ 𝑛 ∈ ℤ ( 𝑀 ≤ 𝑛 ∧ 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2 | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛 ) ) | |
| 2 | df-3an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛 ) ↔ ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑀 ≤ 𝑛 ) ) | |
| 3 | 1 2 | bitri | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑀 ≤ 𝑛 ) ) |
| 4 | 3 | anbi1i | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝜑 ) ↔ ( ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑀 ≤ 𝑛 ) ∧ 𝜑 ) ) |
| 5 | anass | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑀 ≤ 𝑛 ) ∧ 𝜑 ) ↔ ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ ( 𝑀 ≤ 𝑛 ∧ 𝜑 ) ) ) | |
| 6 | an21 | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ ( 𝑀 ≤ 𝑛 ∧ 𝜑 ) ) ↔ ( 𝑛 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ ( 𝑀 ≤ 𝑛 ∧ 𝜑 ) ) ) ) | |
| 7 | 5 6 | bitri | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑀 ≤ 𝑛 ) ∧ 𝜑 ) ↔ ( 𝑛 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ ( 𝑀 ≤ 𝑛 ∧ 𝜑 ) ) ) ) |
| 8 | 4 7 | bitri | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝜑 ) ↔ ( 𝑛 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ ( 𝑀 ≤ 𝑛 ∧ 𝜑 ) ) ) ) |
| 9 | 8 | rexbii2 | ⊢ ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) 𝜑 ↔ ∃ 𝑛 ∈ ℤ ( 𝑀 ∈ ℤ ∧ ( 𝑀 ≤ 𝑛 ∧ 𝜑 ) ) ) |
| 10 | r19.42v | ⊢ ( ∃ 𝑛 ∈ ℤ ( 𝑀 ∈ ℤ ∧ ( 𝑀 ≤ 𝑛 ∧ 𝜑 ) ) ↔ ( 𝑀 ∈ ℤ ∧ ∃ 𝑛 ∈ ℤ ( 𝑀 ≤ 𝑛 ∧ 𝜑 ) ) ) | |
| 11 | 9 10 | bitri | ⊢ ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) 𝜑 ↔ ( 𝑀 ∈ ℤ ∧ ∃ 𝑛 ∈ ℤ ( 𝑀 ≤ 𝑛 ∧ 𝜑 ) ) ) |