This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015) (Revised by AV, 27-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexsupp | |- ( ( F Fn X /\ X e. V /\ Z e. W ) -> ( E. x e. ( F supp Z ) ph <-> E. x e. X ( ( F ` x ) =/= Z /\ ph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsuppfn | |- ( ( F Fn X /\ X e. V /\ Z e. W ) -> ( x e. ( F supp Z ) <-> ( x e. X /\ ( F ` x ) =/= Z ) ) ) |
|
| 2 | 1 | anbi1d | |- ( ( F Fn X /\ X e. V /\ Z e. W ) -> ( ( x e. ( F supp Z ) /\ ph ) <-> ( ( x e. X /\ ( F ` x ) =/= Z ) /\ ph ) ) ) |
| 3 | anass | |- ( ( ( x e. X /\ ( F ` x ) =/= Z ) /\ ph ) <-> ( x e. X /\ ( ( F ` x ) =/= Z /\ ph ) ) ) |
|
| 4 | 2 3 | bitrdi | |- ( ( F Fn X /\ X e. V /\ Z e. W ) -> ( ( x e. ( F supp Z ) /\ ph ) <-> ( x e. X /\ ( ( F ` x ) =/= Z /\ ph ) ) ) ) |
| 5 | 4 | rexbidv2 | |- ( ( F Fn X /\ X e. V /\ Z e. W ) -> ( E. x e. ( F supp Z ) ph <-> E. x e. X ( ( F ` x ) =/= Z /\ ph ) ) ) |