This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert a restricted existential quantification over a pair to a disjunction. (Contributed by NM, 3-Jun-2007) (Revised by Mario Carneiro, 23-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralpr.1 | ⊢ 𝐴 ∈ V | |
| ralpr.2 | ⊢ 𝐵 ∈ V | ||
| ralpr.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| ralpr.4 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) | ||
| Assertion | rexpr | ⊢ ( ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( 𝜓 ∨ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralpr.1 | ⊢ 𝐴 ∈ V | |
| 2 | ralpr.2 | ⊢ 𝐵 ∈ V | |
| 3 | ralpr.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | ralpr.4 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) | |
| 5 | 3 4 | rexprg | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( 𝜓 ∨ 𝜒 ) ) ) |
| 6 | 1 2 5 | mp2an | ⊢ ( ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( 𝜓 ∨ 𝜒 ) ) |