This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
rexcom
Metamath Proof Explorer
Description: Commutation of restricted existential quantifiers. (Contributed by NM , 19-Nov-1995) (Revised by Mario Carneiro , 14-Oct-2016) (Proof
shortened by BJ , 26-Aug-2023) (Proof shortened by Wolf Lammen , 8-Dec-2024)
Ref
Expression
Assertion
rexcom
⊢ ∃ x ∈ A ∃ y ∈ B φ ↔ ∃ y ∈ B ∃ x ∈ A φ
Proof
Step
Hyp
Ref
Expression
1
ralcom
⊢ ∀ x ∈ A ∀ y ∈ B ¬ φ ↔ ∀ y ∈ B ∀ x ∈ A ¬ φ
2
ralnex2
⊢ ∀ x ∈ A ∀ y ∈ B ¬ φ ↔ ¬ ∃ x ∈ A ∃ y ∈ B φ
3
ralnex2
⊢ ∀ y ∈ B ∀ x ∈ A ¬ φ ↔ ¬ ∃ y ∈ B ∃ x ∈ A φ
4
1 2 3
3bitr3i
⊢ ¬ ∃ x ∈ A ∃ y ∈ B φ ↔ ¬ ∃ y ∈ B ∃ x ∈ A φ
5
4
con4bii
⊢ ∃ x ∈ A ∃ y ∈ B φ ↔ ∃ y ∈ B ∃ x ∈ A φ