This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014) (Revised by Mario Carneiro, 2-Dec-2014) (Revised by AV, 19-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resseqnbas.r | ⊢ 𝑅 = ( 𝑊 ↾s 𝐴 ) | |
| resseqnbas.e | ⊢ 𝐶 = ( 𝐸 ‘ 𝑊 ) | ||
| resseqnbas.f | ⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) | ||
| resseqnbas.n | ⊢ ( 𝐸 ‘ ndx ) ≠ ( Base ‘ ndx ) | ||
| Assertion | resseqnbas | ⊢ ( 𝐴 ∈ 𝑉 → 𝐶 = ( 𝐸 ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resseqnbas.r | ⊢ 𝑅 = ( 𝑊 ↾s 𝐴 ) | |
| 2 | resseqnbas.e | ⊢ 𝐶 = ( 𝐸 ‘ 𝑊 ) | |
| 3 | resseqnbas.f | ⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) | |
| 4 | resseqnbas.n | ⊢ ( 𝐸 ‘ ndx ) ≠ ( Base ‘ ndx ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 6 | 1 5 | ressid2 | ⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → 𝑅 = 𝑊 ) |
| 7 | 6 | fveq2d | ⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑊 ) ) |
| 8 | 7 | 3expib | ⊢ ( ( Base ‘ 𝑊 ) ⊆ 𝐴 → ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑊 ) ) ) |
| 9 | 1 5 | ressval2 | ⊢ ( ( ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → 𝑅 = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) |
| 10 | 9 | fveq2d | ⊢ ( ( ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) ) |
| 11 | 3 4 | setsnid | ⊢ ( 𝐸 ‘ 𝑊 ) = ( 𝐸 ‘ ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) |
| 12 | 10 11 | eqtr4di | ⊢ ( ( ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑊 ) ) |
| 13 | 12 | 3expib | ⊢ ( ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 → ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑊 ) ) ) |
| 14 | 8 13 | pm2.61i | ⊢ ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑊 ) ) |
| 15 | 3 | str0 | ⊢ ∅ = ( 𝐸 ‘ ∅ ) |
| 16 | 15 | eqcomi | ⊢ ( 𝐸 ‘ ∅ ) = ∅ |
| 17 | reldmress | ⊢ Rel dom ↾s | |
| 18 | 16 1 17 | oveqprc | ⊢ ( ¬ 𝑊 ∈ V → ( 𝐸 ‘ 𝑊 ) = ( 𝐸 ‘ 𝑅 ) ) |
| 19 | 18 | eqcomd | ⊢ ( ¬ 𝑊 ∈ V → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑊 ) ) |
| 20 | 19 | adantr | ⊢ ( ( ¬ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑊 ) ) |
| 21 | 14 20 | pm2.61ian | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐸 ‘ 𝑅 ) = ( 𝐸 ‘ 𝑊 ) ) |
| 22 | 2 21 | eqtr4id | ⊢ ( 𝐴 ∈ 𝑉 → 𝐶 = ( 𝐸 ‘ 𝑅 ) ) |