This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014) (Revised by Mario Carneiro, 2-Dec-2014) (Revised by AV, 19-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resseqnbas.r | |- R = ( W |`s A ) |
|
| resseqnbas.e | |- C = ( E ` W ) |
||
| resseqnbas.f | |- E = Slot ( E ` ndx ) |
||
| resseqnbas.n | |- ( E ` ndx ) =/= ( Base ` ndx ) |
||
| Assertion | resseqnbas | |- ( A e. V -> C = ( E ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resseqnbas.r | |- R = ( W |`s A ) |
|
| 2 | resseqnbas.e | |- C = ( E ` W ) |
|
| 3 | resseqnbas.f | |- E = Slot ( E ` ndx ) |
|
| 4 | resseqnbas.n | |- ( E ` ndx ) =/= ( Base ` ndx ) |
|
| 5 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 6 | 1 5 | ressid2 | |- ( ( ( Base ` W ) C_ A /\ W e. _V /\ A e. V ) -> R = W ) |
| 7 | 6 | fveq2d | |- ( ( ( Base ` W ) C_ A /\ W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) |
| 8 | 7 | 3expib | |- ( ( Base ` W ) C_ A -> ( ( W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) ) |
| 9 | 1 5 | ressval2 | |- ( ( -. ( Base ` W ) C_ A /\ W e. _V /\ A e. V ) -> R = ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) ) |
| 10 | 9 | fveq2d | |- ( ( -. ( Base ` W ) C_ A /\ W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) ) ) |
| 11 | 3 4 | setsnid | |- ( E ` W ) = ( E ` ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) ) |
| 12 | 10 11 | eqtr4di | |- ( ( -. ( Base ` W ) C_ A /\ W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) |
| 13 | 12 | 3expib | |- ( -. ( Base ` W ) C_ A -> ( ( W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) ) |
| 14 | 8 13 | pm2.61i | |- ( ( W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) |
| 15 | 3 | str0 | |- (/) = ( E ` (/) ) |
| 16 | 15 | eqcomi | |- ( E ` (/) ) = (/) |
| 17 | reldmress | |- Rel dom |`s |
|
| 18 | 16 1 17 | oveqprc | |- ( -. W e. _V -> ( E ` W ) = ( E ` R ) ) |
| 19 | 18 | eqcomd | |- ( -. W e. _V -> ( E ` R ) = ( E ` W ) ) |
| 20 | 19 | adantr | |- ( ( -. W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) |
| 21 | 14 20 | pm2.61ian | |- ( A e. V -> ( E ` R ) = ( E ` W ) ) |
| 22 | 2 21 | eqtr4id | |- ( A e. V -> C = ( E ` R ) ) |