This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The last symbol of a nonempty "repeated symbol word". (Contributed by AV, 4-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | repswlsw | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( lastS ‘ ( 𝑆 repeatS 𝑁 ) ) = 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 2 | repsw | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑆 repeatS 𝑁 ) ∈ Word 𝑉 ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑆 repeatS 𝑁 ) ∈ Word 𝑉 ) |
| 4 | lsw | ⊢ ( ( 𝑆 repeatS 𝑁 ) ∈ Word 𝑉 → ( lastS ‘ ( 𝑆 repeatS 𝑁 ) ) = ( ( 𝑆 repeatS 𝑁 ) ‘ ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) − 1 ) ) ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( lastS ‘ ( 𝑆 repeatS 𝑁 ) ) = ( ( 𝑆 repeatS 𝑁 ) ‘ ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) − 1 ) ) ) |
| 6 | simpl | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → 𝑆 ∈ 𝑉 ) | |
| 7 | 1 | adantl | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ0 ) |
| 8 | repswlen | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) = 𝑁 ) | |
| 9 | 1 8 | sylan2 | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) = 𝑁 ) |
| 10 | 9 | oveq1d | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) − 1 ) = ( 𝑁 − 1 ) ) |
| 11 | fzo0end | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ( 0 ..^ 𝑁 ) ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑁 − 1 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 13 | 10 12 | eqeltrd | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) − 1 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 14 | repswsymb | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) − 1 ) ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 repeatS 𝑁 ) ‘ ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) − 1 ) ) = 𝑆 ) | |
| 15 | 6 7 13 14 | syl3anc | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( ( 𝑆 repeatS 𝑁 ) ‘ ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) − 1 ) ) = 𝑆 ) |
| 16 | 5 15 | eqtrd | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( lastS ‘ ( 𝑆 repeatS 𝑁 ) ) = 𝑆 ) |