This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton is a relation iff it has a nonempty domain. (Contributed by NM, 25-Sep-2013) Make hypothesis an antecedent. (Revised by BJ, 12-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relsn2 | ⊢ ( 𝐴 ∈ 𝑉 → ( Rel { 𝐴 } ↔ dom { 𝐴 } ≠ ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsng | ⊢ ( 𝐴 ∈ 𝑉 → ( Rel { 𝐴 } ↔ 𝐴 ∈ ( V × V ) ) ) | |
| 2 | dmsnn0 | ⊢ ( 𝐴 ∈ ( V × V ) ↔ dom { 𝐴 } ≠ ∅ ) | |
| 3 | 1 2 | bitrdi | ⊢ ( 𝐴 ∈ 𝑉 → ( Rel { 𝐴 } ↔ dom { 𝐴 } ≠ ∅ ) ) |