This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
relsn2
Metamath Proof Explorer
Description: A singleton is a relation iff it has a nonempty domain. (Contributed by NM , 25-Sep-2013) Make hypothesis an antecedent. (Revised by BJ , 12-Feb-2022)
Ref
Expression
Assertion
relsn2
⊢ A ∈ V → Rel ⁡ A ↔ dom ⁡ A ≠ ∅
Proof
Step
Hyp
Ref
Expression
1
relsng
⊢ A ∈ V → Rel ⁡ A ↔ A ∈ V × V
2
dmsnn0
⊢ A ∈ V × V ↔ dom ⁡ A ≠ ∅
3
1 2
bitrdi
⊢ A ∈ V → Rel ⁡ A ↔ dom ⁡ A ≠ ∅