This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say that an intersection of the identity relation with a Cartesian product is a subclass. (Contributed by Peter Mazsa, 12-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ref5 | ⊢ ( ( I ∩ ( 𝐴 × 𝐵 ) ) ⊆ 𝑅 ↔ ∀ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) 𝑥 𝑅 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcom | ⊢ ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) | |
| 2 | 1 | imbi1i | ⊢ ( ( 𝑦 = 𝑥 → 𝑥 𝑅 𝑦 ) ↔ ( 𝑥 = 𝑦 → 𝑥 𝑅 𝑦 ) ) |
| 3 | 2 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝑦 = 𝑥 → 𝑥 𝑅 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑦 → 𝑥 𝑅 𝑦 ) ) |
| 4 | breq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝑥 𝑅 𝑦 ↔ 𝑥 𝑅 𝑥 ) ) | |
| 5 | 4 | ceqsralbv | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝑦 = 𝑥 → 𝑥 𝑅 𝑦 ) ↔ ( 𝑥 ∈ 𝐵 → 𝑥 𝑅 𝑥 ) ) |
| 6 | 3 5 | bitr3i | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑦 → 𝑥 𝑅 𝑦 ) ↔ ( 𝑥 ∈ 𝐵 → 𝑥 𝑅 𝑥 ) ) |
| 7 | 6 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑦 → 𝑥 𝑅 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝐵 → 𝑥 𝑅 𝑥 ) ) |
| 8 | idinxpss | ⊢ ( ( I ∩ ( 𝐴 × 𝐵 ) ) ⊆ 𝑅 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑦 → 𝑥 𝑅 𝑦 ) ) | |
| 9 | ralin | ⊢ ( ∀ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) 𝑥 𝑅 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝐵 → 𝑥 𝑅 𝑥 ) ) | |
| 10 | 7 8 9 | 3bitr4i | ⊢ ( ( I ∩ ( 𝐴 × 𝐵 ) ) ⊆ 𝑅 ↔ ∀ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) 𝑥 𝑅 𝑥 ) |