This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say that an intersection of the identity relation with a Cartesian product is a subclass. (Contributed by Peter Mazsa, 12-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ref5 | |- ( ( _I i^i ( A X. B ) ) C_ R <-> A. x e. ( A i^i B ) x R x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcom | |- ( y = x <-> x = y ) |
|
| 2 | 1 | imbi1i | |- ( ( y = x -> x R y ) <-> ( x = y -> x R y ) ) |
| 3 | 2 | ralbii | |- ( A. y e. B ( y = x -> x R y ) <-> A. y e. B ( x = y -> x R y ) ) |
| 4 | breq2 | |- ( y = x -> ( x R y <-> x R x ) ) |
|
| 5 | 4 | ceqsralbv | |- ( A. y e. B ( y = x -> x R y ) <-> ( x e. B -> x R x ) ) |
| 6 | 3 5 | bitr3i | |- ( A. y e. B ( x = y -> x R y ) <-> ( x e. B -> x R x ) ) |
| 7 | 6 | ralbii | |- ( A. x e. A A. y e. B ( x = y -> x R y ) <-> A. x e. A ( x e. B -> x R x ) ) |
| 8 | idinxpss | |- ( ( _I i^i ( A X. B ) ) C_ R <-> A. x e. A A. y e. B ( x = y -> x R y ) ) |
|
| 9 | ralin | |- ( A. x e. ( A i^i B ) x R x <-> A. x e. A ( x e. B -> x R x ) ) |
|
| 10 | 7 8 9 | 3bitr4i | |- ( ( _I i^i ( A X. B ) ) C_ R <-> A. x e. ( A i^i B ) x R x ) |