This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Both RR and CC are perfect subsets of CC . (Contributed by Mario Carneiro, 28-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | recnperf.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| Assertion | recnperf | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝐾 ↾t 𝑆 ) ∈ Perf ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recnperf.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 2 | elpri | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) ) | |
| 3 | oveq2 | ⊢ ( 𝑆 = ℝ → ( 𝐾 ↾t 𝑆 ) = ( 𝐾 ↾t ℝ ) ) | |
| 4 | 1 | reperf | ⊢ ( 𝐾 ↾t ℝ ) ∈ Perf |
| 5 | 3 4 | eqeltrdi | ⊢ ( 𝑆 = ℝ → ( 𝐾 ↾t 𝑆 ) ∈ Perf ) |
| 6 | oveq2 | ⊢ ( 𝑆 = ℂ → ( 𝐾 ↾t 𝑆 ) = ( 𝐾 ↾t ℂ ) ) | |
| 7 | 1 | cnfldtopon | ⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 8 | 7 | toponunii | ⊢ ℂ = ∪ 𝐾 |
| 9 | 8 | restid | ⊢ ( 𝐾 ∈ ( TopOn ‘ ℂ ) → ( 𝐾 ↾t ℂ ) = 𝐾 ) |
| 10 | 7 9 | ax-mp | ⊢ ( 𝐾 ↾t ℂ ) = 𝐾 |
| 11 | 1 | cnperf | ⊢ 𝐾 ∈ Perf |
| 12 | 10 11 | eqeltri | ⊢ ( 𝐾 ↾t ℂ ) ∈ Perf |
| 13 | 6 12 | eqeltrdi | ⊢ ( 𝑆 = ℂ → ( 𝐾 ↾t 𝑆 ) ∈ Perf ) |
| 14 | 5 13 | jaoi | ⊢ ( ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) → ( 𝐾 ↾t 𝑆 ) ∈ Perf ) |
| 15 | 2 14 | syl | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝐾 ↾t 𝑆 ) ∈ Perf ) |