This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Both RR and CC are perfect subsets of CC . (Contributed by Mario Carneiro, 28-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | recnperf.k | |- K = ( TopOpen ` CCfld ) |
|
| Assertion | recnperf | |- ( S e. { RR , CC } -> ( K |`t S ) e. Perf ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recnperf.k | |- K = ( TopOpen ` CCfld ) |
|
| 2 | elpri | |- ( S e. { RR , CC } -> ( S = RR \/ S = CC ) ) |
|
| 3 | oveq2 | |- ( S = RR -> ( K |`t S ) = ( K |`t RR ) ) |
|
| 4 | 1 | reperf | |- ( K |`t RR ) e. Perf |
| 5 | 3 4 | eqeltrdi | |- ( S = RR -> ( K |`t S ) e. Perf ) |
| 6 | oveq2 | |- ( S = CC -> ( K |`t S ) = ( K |`t CC ) ) |
|
| 7 | 1 | cnfldtopon | |- K e. ( TopOn ` CC ) |
| 8 | 7 | toponunii | |- CC = U. K |
| 9 | 8 | restid | |- ( K e. ( TopOn ` CC ) -> ( K |`t CC ) = K ) |
| 10 | 7 9 | ax-mp | |- ( K |`t CC ) = K |
| 11 | 1 | cnperf | |- K e. Perf |
| 12 | 10 11 | eqeltri | |- ( K |`t CC ) e. Perf |
| 13 | 6 12 | eqeltrdi | |- ( S = CC -> ( K |`t S ) e. Perf ) |
| 14 | 5 13 | jaoi | |- ( ( S = RR \/ S = CC ) -> ( K |`t S ) e. Perf ) |
| 15 | 2 14 | syl | |- ( S e. { RR , CC } -> ( K |`t S ) e. Perf ) |