This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: luk-2 derived from the Tarski-Bernays-Wajsberg axioms. (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | re1luk2 | ⊢ ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tbw-negdf | ⊢ ( ( ( ¬ 𝜑 → ( 𝜑 → ⊥ ) ) → ( ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) → ⊥ ) ) → ⊥ ) | |
| 2 | tbw-ax2 | ⊢ ( ( ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) → ⊥ ) → ( ( ¬ 𝜑 → ( 𝜑 → ⊥ ) ) → ( ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) → ⊥ ) ) ) | |
| 3 | tbwlem4 | ⊢ ( ( ( ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) → ⊥ ) → ( ( ¬ 𝜑 → ( 𝜑 → ⊥ ) ) → ( ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) → ⊥ ) ) ) → ( ( ( ( ¬ 𝜑 → ( 𝜑 → ⊥ ) ) → ( ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) → ⊥ ) ) → ⊥ ) → ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) ) ) | |
| 4 | 2 3 | ax-mp | ⊢ ( ( ( ( ¬ 𝜑 → ( 𝜑 → ⊥ ) ) → ( ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) → ⊥ ) ) → ⊥ ) → ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) ) |
| 5 | 1 4 | ax-mp | ⊢ ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) |
| 6 | tbw-ax1 | ⊢ ( ( ( 𝜑 → ⊥ ) → ¬ 𝜑 ) → ( ( ¬ 𝜑 → 𝜑 ) → ( ( 𝜑 → ⊥ ) → 𝜑 ) ) ) | |
| 7 | 5 6 | ax-mp | ⊢ ( ( ¬ 𝜑 → 𝜑 ) → ( ( 𝜑 → ⊥ ) → 𝜑 ) ) |
| 8 | tbw-ax3 | ⊢ ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 ) | |
| 9 | 7 8 | tbwsyl | ⊢ ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) |