This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Used to rederive the Lukasiewicz axioms from Tarski-Bernays-Wajsberg'. (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tbwlem4 | ⊢ ( ( ( 𝜑 → ⊥ ) → 𝜓 ) → ( ( 𝜓 → ⊥ ) → 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tbw-ax4 | ⊢ ( ⊥ → ⊥ ) | |
| 2 | tbw-ax1 | ⊢ ( ( 𝜓 → ⊥ ) → ( ( ⊥ → ⊥ ) → ( 𝜓 → ⊥ ) ) ) | |
| 3 | tbwlem1 | ⊢ ( ( ( 𝜓 → ⊥ ) → ( ( ⊥ → ⊥ ) → ( 𝜓 → ⊥ ) ) ) → ( ( ⊥ → ⊥ ) → ( ( 𝜓 → ⊥ ) → ( 𝜓 → ⊥ ) ) ) ) | |
| 4 | 2 3 | ax-mp | ⊢ ( ( ⊥ → ⊥ ) → ( ( 𝜓 → ⊥ ) → ( 𝜓 → ⊥ ) ) ) |
| 5 | 1 4 | ax-mp | ⊢ ( ( 𝜓 → ⊥ ) → ( 𝜓 → ⊥ ) ) |
| 6 | tbwlem1 | ⊢ ( ( ( 𝜓 → ⊥ ) → ( 𝜓 → ⊥ ) ) → ( 𝜓 → ( ( 𝜓 → ⊥ ) → ⊥ ) ) ) | |
| 7 | 5 6 | ax-mp | ⊢ ( 𝜓 → ( ( 𝜓 → ⊥ ) → ⊥ ) ) |
| 8 | tbw-ax1 | ⊢ ( ( ( 𝜑 → ⊥ ) → 𝜓 ) → ( ( 𝜓 → ( ( 𝜓 → ⊥ ) → ⊥ ) ) → ( ( 𝜑 → ⊥ ) → ( ( 𝜓 → ⊥ ) → ⊥ ) ) ) ) | |
| 9 | tbwlem1 | ⊢ ( ( ( ( 𝜑 → ⊥ ) → 𝜓 ) → ( ( 𝜓 → ( ( 𝜓 → ⊥ ) → ⊥ ) ) → ( ( 𝜑 → ⊥ ) → ( ( 𝜓 → ⊥ ) → ⊥ ) ) ) ) → ( ( 𝜓 → ( ( 𝜓 → ⊥ ) → ⊥ ) ) → ( ( ( 𝜑 → ⊥ ) → 𝜓 ) → ( ( 𝜑 → ⊥ ) → ( ( 𝜓 → ⊥ ) → ⊥ ) ) ) ) ) | |
| 10 | 8 9 | ax-mp | ⊢ ( ( 𝜓 → ( ( 𝜓 → ⊥ ) → ⊥ ) ) → ( ( ( 𝜑 → ⊥ ) → 𝜓 ) → ( ( 𝜑 → ⊥ ) → ( ( 𝜓 → ⊥ ) → ⊥ ) ) ) ) |
| 11 | 7 10 | ax-mp | ⊢ ( ( ( 𝜑 → ⊥ ) → 𝜓 ) → ( ( 𝜑 → ⊥ ) → ( ( 𝜓 → ⊥ ) → ⊥ ) ) ) |
| 12 | tbwlem2 | ⊢ ( ( ( 𝜑 → ⊥ ) → ( ( 𝜓 → ⊥ ) → ⊥ ) ) → ( ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 ) → ( ( 𝜓 → ⊥ ) → 𝜑 ) ) ) | |
| 13 | tbwlem3 | ⊢ ( ( ( ( ( 𝜑 → ⊥ ) → 𝜑 ) → 𝜑 ) → ( ( 𝜓 → ⊥ ) → 𝜑 ) ) → ( ( 𝜓 → ⊥ ) → 𝜑 ) ) | |
| 14 | 12 13 | tbwsyl | ⊢ ( ( ( 𝜑 → ⊥ ) → ( ( 𝜓 → ⊥ ) → ⊥ ) ) → ( ( 𝜓 → ⊥ ) → 𝜑 ) ) |
| 15 | 11 14 | tbwsyl | ⊢ ( ( ( 𝜑 → ⊥ ) → 𝜓 ) → ( ( 𝜓 → ⊥ ) → 𝜑 ) ) |