This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: luk-2 derived from the Tarski-Bernays-Wajsberg axioms. (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | re1luk2 | |- ( ( -. ph -> ph ) -> ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tbw-negdf | |- ( ( ( -. ph -> ( ph -> F. ) ) -> ( ( ( ph -> F. ) -> -. ph ) -> F. ) ) -> F. ) |
|
| 2 | tbw-ax2 | |- ( ( ( ( ph -> F. ) -> -. ph ) -> F. ) -> ( ( -. ph -> ( ph -> F. ) ) -> ( ( ( ph -> F. ) -> -. ph ) -> F. ) ) ) |
|
| 3 | tbwlem4 | |- ( ( ( ( ( ph -> F. ) -> -. ph ) -> F. ) -> ( ( -. ph -> ( ph -> F. ) ) -> ( ( ( ph -> F. ) -> -. ph ) -> F. ) ) ) -> ( ( ( ( -. ph -> ( ph -> F. ) ) -> ( ( ( ph -> F. ) -> -. ph ) -> F. ) ) -> F. ) -> ( ( ph -> F. ) -> -. ph ) ) ) |
|
| 4 | 2 3 | ax-mp | |- ( ( ( ( -. ph -> ( ph -> F. ) ) -> ( ( ( ph -> F. ) -> -. ph ) -> F. ) ) -> F. ) -> ( ( ph -> F. ) -> -. ph ) ) |
| 5 | 1 4 | ax-mp | |- ( ( ph -> F. ) -> -. ph ) |
| 6 | tbw-ax1 | |- ( ( ( ph -> F. ) -> -. ph ) -> ( ( -. ph -> ph ) -> ( ( ph -> F. ) -> ph ) ) ) |
|
| 7 | 5 6 | ax-mp | |- ( ( -. ph -> ph ) -> ( ( ph -> F. ) -> ph ) ) |
| 8 | tbw-ax3 | |- ( ( ( ph -> F. ) -> ph ) -> ph ) |
|
| 9 | 7 8 | tbwsyl | |- ( ( -. ph -> ph ) -> ph ) |