This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the recursive definition generator at a limit ordinal, in terms of the union of all smaller values. (Contributed by NM, 23-Apr-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rdglim2 | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdglim | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) = ∪ ( rec ( 𝐹 , 𝐴 ) “ 𝐵 ) ) | |
| 2 | dfima3 | ⊢ ( rec ( 𝐹 , 𝐴 ) “ 𝐵 ) = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 〈 𝑥 , 𝑦 〉 ∈ rec ( 𝐹 , 𝐴 ) ) } | |
| 3 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐵 𝑦 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑦 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ) ) | |
| 4 | limord | ⊢ ( Lim 𝐵 → Ord 𝐵 ) | |
| 5 | ordelord | ⊢ ( ( Ord 𝐵 ∧ 𝑥 ∈ 𝐵 ) → Ord 𝑥 ) | |
| 6 | 5 | ex | ⊢ ( Ord 𝐵 → ( 𝑥 ∈ 𝐵 → Ord 𝑥 ) ) |
| 7 | vex | ⊢ 𝑥 ∈ V | |
| 8 | 7 | elon | ⊢ ( 𝑥 ∈ On ↔ Ord 𝑥 ) |
| 9 | 6 8 | imbitrrdi | ⊢ ( Ord 𝐵 → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ On ) ) |
| 10 | 4 9 | syl | ⊢ ( Lim 𝐵 → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ On ) ) |
| 11 | eqcom | ⊢ ( 𝑦 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ↔ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) = 𝑦 ) | |
| 12 | rdgfnon | ⊢ rec ( 𝐹 , 𝐴 ) Fn On | |
| 13 | fnopfvb | ⊢ ( ( rec ( 𝐹 , 𝐴 ) Fn On ∧ 𝑥 ∈ On ) → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) = 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ rec ( 𝐹 , 𝐴 ) ) ) | |
| 14 | 12 13 | mpan | ⊢ ( 𝑥 ∈ On → ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) = 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ rec ( 𝐹 , 𝐴 ) ) ) |
| 15 | 11 14 | bitrid | ⊢ ( 𝑥 ∈ On → ( 𝑦 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ rec ( 𝐹 , 𝐴 ) ) ) |
| 16 | 10 15 | syl6 | ⊢ ( Lim 𝐵 → ( 𝑥 ∈ 𝐵 → ( 𝑦 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ rec ( 𝐹 , 𝐴 ) ) ) ) |
| 17 | 16 | pm5.32d | ⊢ ( Lim 𝐵 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ 〈 𝑥 , 𝑦 〉 ∈ rec ( 𝐹 , 𝐴 ) ) ) ) |
| 18 | 17 | exbidv | ⊢ ( Lim 𝐵 → ( ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑦 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 〈 𝑥 , 𝑦 〉 ∈ rec ( 𝐹 , 𝐴 ) ) ) ) |
| 19 | 3 18 | bitr2id | ⊢ ( Lim 𝐵 → ( ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 〈 𝑥 , 𝑦 〉 ∈ rec ( 𝐹 , 𝐴 ) ) ↔ ∃ 𝑥 ∈ 𝐵 𝑦 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) ) ) |
| 20 | 19 | abbidv | ⊢ ( Lim 𝐵 → { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 〈 𝑥 , 𝑦 〉 ∈ rec ( 𝐹 , 𝐴 ) ) } = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) } ) |
| 21 | 2 20 | eqtrid | ⊢ ( Lim 𝐵 → ( rec ( 𝐹 , 𝐴 ) “ 𝐵 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) } ) |
| 22 | 21 | unieqd | ⊢ ( Lim 𝐵 → ∪ ( rec ( 𝐹 , 𝐴 ) “ 𝐵 ) = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) } ) |
| 23 | 22 | adantl | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → ∪ ( rec ( 𝐹 , 𝐴 ) “ 𝐵 ) = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) } ) |
| 24 | 1 23 | eqtrd | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → ( rec ( 𝐹 , 𝐴 ) ‘ 𝐵 ) = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑥 ) } ) |