This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the recursive definition generator at a limit ordinal, in terms of the union of all smaller values. (Contributed by NM, 23-Apr-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rdglim2 | |- ( ( B e. C /\ Lim B ) -> ( rec ( F , A ) ` B ) = U. { y | E. x e. B y = ( rec ( F , A ) ` x ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdglim | |- ( ( B e. C /\ Lim B ) -> ( rec ( F , A ) ` B ) = U. ( rec ( F , A ) " B ) ) |
|
| 2 | dfima3 | |- ( rec ( F , A ) " B ) = { y | E. x ( x e. B /\ <. x , y >. e. rec ( F , A ) ) } |
|
| 3 | df-rex | |- ( E. x e. B y = ( rec ( F , A ) ` x ) <-> E. x ( x e. B /\ y = ( rec ( F , A ) ` x ) ) ) |
|
| 4 | limord | |- ( Lim B -> Ord B ) |
|
| 5 | ordelord | |- ( ( Ord B /\ x e. B ) -> Ord x ) |
|
| 6 | 5 | ex | |- ( Ord B -> ( x e. B -> Ord x ) ) |
| 7 | vex | |- x e. _V |
|
| 8 | 7 | elon | |- ( x e. On <-> Ord x ) |
| 9 | 6 8 | imbitrrdi | |- ( Ord B -> ( x e. B -> x e. On ) ) |
| 10 | 4 9 | syl | |- ( Lim B -> ( x e. B -> x e. On ) ) |
| 11 | eqcom | |- ( y = ( rec ( F , A ) ` x ) <-> ( rec ( F , A ) ` x ) = y ) |
|
| 12 | rdgfnon | |- rec ( F , A ) Fn On |
|
| 13 | fnopfvb | |- ( ( rec ( F , A ) Fn On /\ x e. On ) -> ( ( rec ( F , A ) ` x ) = y <-> <. x , y >. e. rec ( F , A ) ) ) |
|
| 14 | 12 13 | mpan | |- ( x e. On -> ( ( rec ( F , A ) ` x ) = y <-> <. x , y >. e. rec ( F , A ) ) ) |
| 15 | 11 14 | bitrid | |- ( x e. On -> ( y = ( rec ( F , A ) ` x ) <-> <. x , y >. e. rec ( F , A ) ) ) |
| 16 | 10 15 | syl6 | |- ( Lim B -> ( x e. B -> ( y = ( rec ( F , A ) ` x ) <-> <. x , y >. e. rec ( F , A ) ) ) ) |
| 17 | 16 | pm5.32d | |- ( Lim B -> ( ( x e. B /\ y = ( rec ( F , A ) ` x ) ) <-> ( x e. B /\ <. x , y >. e. rec ( F , A ) ) ) ) |
| 18 | 17 | exbidv | |- ( Lim B -> ( E. x ( x e. B /\ y = ( rec ( F , A ) ` x ) ) <-> E. x ( x e. B /\ <. x , y >. e. rec ( F , A ) ) ) ) |
| 19 | 3 18 | bitr2id | |- ( Lim B -> ( E. x ( x e. B /\ <. x , y >. e. rec ( F , A ) ) <-> E. x e. B y = ( rec ( F , A ) ` x ) ) ) |
| 20 | 19 | abbidv | |- ( Lim B -> { y | E. x ( x e. B /\ <. x , y >. e. rec ( F , A ) ) } = { y | E. x e. B y = ( rec ( F , A ) ` x ) } ) |
| 21 | 2 20 | eqtrid | |- ( Lim B -> ( rec ( F , A ) " B ) = { y | E. x e. B y = ( rec ( F , A ) ` x ) } ) |
| 22 | 21 | unieqd | |- ( Lim B -> U. ( rec ( F , A ) " B ) = U. { y | E. x e. B y = ( rec ( F , A ) ` x ) } ) |
| 23 | 22 | adantl | |- ( ( B e. C /\ Lim B ) -> U. ( rec ( F , A ) " B ) = U. { y | E. x e. B y = ( rec ( F , A ) ` x ) } ) |
| 24 | 1 23 | eqtrd | |- ( ( B e. C /\ Lim B ) -> ( rec ( F , A ) ` B ) = U. { y | E. x e. B y = ( rec ( F , A ) ` x ) } ) |