This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A universal quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ralv | ⊢ ( ∀ 𝑥 ∈ V 𝜑 ↔ ∀ 𝑥 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral | ⊢ ( ∀ 𝑥 ∈ V 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ V → 𝜑 ) ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | 2 | a1bi | ⊢ ( 𝜑 ↔ ( 𝑥 ∈ V → 𝜑 ) ) |
| 4 | 3 | albii | ⊢ ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ V → 𝜑 ) ) |
| 5 | 1 4 | bitr4i | ⊢ ( ∀ 𝑥 ∈ V 𝜑 ↔ ∀ 𝑥 𝜑 ) |