This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | raluz2 | ⊢ ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) 𝜑 ↔ ( 𝑀 ∈ ℤ → ∀ 𝑛 ∈ ℤ ( 𝑀 ≤ 𝑛 → 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2 | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛 ) ) | |
| 2 | 3anass | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛 ) ↔ ( 𝑀 ∈ ℤ ∧ ( 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛 ) ) ) | |
| 3 | 1 2 | bitri | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ ( 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛 ) ) ) |
| 4 | 3 | imbi1i | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝜑 ) ↔ ( ( 𝑀 ∈ ℤ ∧ ( 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛 ) ) → 𝜑 ) ) |
| 5 | impexp | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ ( 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛 ) ) → 𝜑 ) ↔ ( 𝑀 ∈ ℤ → ( ( 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛 ) → 𝜑 ) ) ) | |
| 6 | impexp | ⊢ ( ( ( 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛 ) → 𝜑 ) ↔ ( 𝑛 ∈ ℤ → ( 𝑀 ≤ 𝑛 → 𝜑 ) ) ) | |
| 7 | 6 | imbi2i | ⊢ ( ( 𝑀 ∈ ℤ → ( ( 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛 ) → 𝜑 ) ) ↔ ( 𝑀 ∈ ℤ → ( 𝑛 ∈ ℤ → ( 𝑀 ≤ 𝑛 → 𝜑 ) ) ) ) |
| 8 | 5 7 | bitri | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ ( 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛 ) ) → 𝜑 ) ↔ ( 𝑀 ∈ ℤ → ( 𝑛 ∈ ℤ → ( 𝑀 ≤ 𝑛 → 𝜑 ) ) ) ) |
| 9 | bi2.04 | ⊢ ( ( 𝑀 ∈ ℤ → ( 𝑛 ∈ ℤ → ( 𝑀 ≤ 𝑛 → 𝜑 ) ) ) ↔ ( 𝑛 ∈ ℤ → ( 𝑀 ∈ ℤ → ( 𝑀 ≤ 𝑛 → 𝜑 ) ) ) ) | |
| 10 | 8 9 | bitri | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ ( 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛 ) ) → 𝜑 ) ↔ ( 𝑛 ∈ ℤ → ( 𝑀 ∈ ℤ → ( 𝑀 ≤ 𝑛 → 𝜑 ) ) ) ) |
| 11 | 4 10 | bitri | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝜑 ) ↔ ( 𝑛 ∈ ℤ → ( 𝑀 ∈ ℤ → ( 𝑀 ≤ 𝑛 → 𝜑 ) ) ) ) |
| 12 | 11 | ralbii2 | ⊢ ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) 𝜑 ↔ ∀ 𝑛 ∈ ℤ ( 𝑀 ∈ ℤ → ( 𝑀 ≤ 𝑛 → 𝜑 ) ) ) |
| 13 | r19.21v | ⊢ ( ∀ 𝑛 ∈ ℤ ( 𝑀 ∈ ℤ → ( 𝑀 ≤ 𝑛 → 𝜑 ) ) ↔ ( 𝑀 ∈ ℤ → ∀ 𝑛 ∈ ℤ ( 𝑀 ≤ 𝑛 → 𝜑 ) ) ) | |
| 14 | 12 13 | bitri | ⊢ ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) 𝜑 ↔ ( 𝑀 ∈ ℤ → ∀ 𝑛 ∈ ℤ ( 𝑀 ≤ 𝑛 → 𝜑 ) ) ) |