This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of raleqbidvv as of 9-Mar-2025. (Contributed by BJ, 22-Sep-2024) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | raleqbidvv.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| raleqbidvv.2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | raleqbidvvOLD | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ∀ 𝑥 ∈ 𝐵 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbidvv.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | raleqbidvv.2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | 2 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝜓 ↔ 𝜒 ) ) |
| 4 | dfcleq | ⊢ ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) | |
| 5 | 1 4 | sylib | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 6 | 19.26 | ⊢ ( ∀ 𝑥 ( ( 𝜓 ↔ 𝜒 ) ∧ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ↔ ( ∀ 𝑥 ( 𝜓 ↔ 𝜒 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) | |
| 7 | 3 5 6 | sylanbrc | ⊢ ( 𝜑 → ∀ 𝑥 ( ( 𝜓 ↔ 𝜒 ) ∧ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) |
| 8 | imbi12 | ⊢ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) → ( ( 𝜓 ↔ 𝜒 ) → ( ( 𝑥 ∈ 𝐴 → 𝜓 ) ↔ ( 𝑥 ∈ 𝐵 → 𝜒 ) ) ) ) | |
| 9 | 8 | impcom | ⊢ ( ( ( 𝜓 ↔ 𝜒 ) ∧ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐴 → 𝜓 ) ↔ ( 𝑥 ∈ 𝐵 → 𝜒 ) ) ) |
| 10 | 7 9 | sylg | ⊢ ( 𝜑 → ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 → 𝜓 ) ↔ ( 𝑥 ∈ 𝐵 → 𝜒 ) ) ) |
| 11 | albi | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 → 𝜓 ) ↔ ( 𝑥 ∈ 𝐵 → 𝜒 ) ) → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜓 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜒 ) ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜓 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜒 ) ) ) |
| 13 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜓 ) ) | |
| 14 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐵 𝜒 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜒 ) ) | |
| 15 | 12 13 14 | 3bitr4g | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ∀ 𝑥 ∈ 𝐵 𝜒 ) ) |